The Heating of Solar Coronal Loops by Alfvén Wave Turbulence
نویسندگان
چکیده
In this paper we further develop a model for the heating of coronal loops by Alfvén wave turbulence (AWT). The Alfvén waves are assumed to be launched from a collection of kilogauss flux tubes in the photosphere at the two ends of the loop. Using a three-dimensional magneto-hydrodynamic (MHD) model for an active-region loop, we investigate how the waves from neighboring flux tubes interact in the chromosphere and corona. For a particular combination of model parameters we find that AWT can produce enough heat to maintain a peak temperature of about 2.5 MK, somewhat lower than the temperatures of 3 – 4 MK observed in the cores of active regions. The heating rates vary strongly in space and time, but the simulated heating events have durations less than 1 minute and are unlikely to reproduce the observed broad Differential Emission Measure distributions of active regions. The simulated spectral line non-thermal widths are predicted to be about 27 km s−1, which is high compared to the observed values. Therefore, the present AWT model does not satisfy the observational constraints. An alternative “magnetic braiding” model is considered in which the coronal field lines are subject to slow random footpoint motions, but we find that such long period motions produce much less heating than the shorter period waves launched within the flux tubes. We discuss several possibilities for resolving the problem of producing sufficiently hot loops in active regions.
منابع مشابه
On a source of Alfvén waves heating the solar corona
Studies of the origin of coronal heating and acceleration of the solar wind invoke high-frequency Alfvén waves. Here we suggest a source for such waves associated with twisted magnetic loops emerging on the solar surface and reconnecting with the open field. We identify the loops with the ephemeral regions (small-scale bipoles) observed by ground-based instruments and by SOHO. To characterize t...
متن کاملAn anisotropic turbulent model for solar coronal heating
Context. We present a self-consistent model of solar coronal heating in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence. Aims. We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods. The corona...
متن کاملSolar coronal electron heating by short-wavelength dispersive shear Alfvén waves
The electron heating of the solar coronal plasma has remained one of the most important problems in solar physics. An explanation of the electron heating rests on the identification of the energy source and appropriate physical mechanisms via which the energy can be channelled to the electrons. Our objective here is to present an estimate for the electron heating rate in the presence of finite ...
متن کاملResonant Alfvén waves in coronal arcades driven by footpoint motions
X-ray spectroscopy performed from different astronomical spacecrafts has shown that the solar corona is structured by magnetic fields having the shape of loops and arcades. These structures are formed by stretching and reconnection of magnetic fields, and remain stable from days to weeks. Also, sporadic or periodic brightenings of such structures have been detected in UV and soft X-ray observat...
متن کاملTurbulence in the Sub-alfvénic Solar Wind Driven by Reflection of Low-frequency Alfvén Waves
We study the formation and evolution of a turbulent spectrum of Alfvén waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvénic critical point. The background solar wind is assigned and 2D shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature ...
متن کامل